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Recall that a “classical” linear model can be written as: 
 

response variable = explanatory variable(s) + Error 
 
For example, if we are performing a simple linear regression, we 
generally use a model of the form 
 
 (1) y = a + bx  
 
where a is the intercept and b is the slope. In many statistics 
textbooks, the parameters a and b will be labeled ß0 and ß1 by 
convention. And because every observation usually doesn´t lie 
perfectly on the regression line, it usually is accompanied by an 
error component, εi. The i stands for the i´th observation: 
 

(2) yi = ß0 + ß1xi + εi 
 
Now how can be generalize this expression for all linear models? We 
can, for example, write that every observation y is a function of a 
systematic component, µ(x; ß), and an error component, ε. ß is a 
vector of parameters, and x is a vector of explanatory variables. 
This is why we write both in bold: 
 
 (3) Y (x, ε)= µ(x; ß) + ε 
 
Here, all the x´s are somewhat controllable, non-random variables 
that are usually called explanatory variables (or independent 
variables). Note that the systematic component, µ(x;ß), and the 
errors, ε, are assumed to be additive. 
 
Before we dive a bit deeper into linear models, let us think of some 
examples: 
 
Y could be the yield (biomass) of a piece of arable land 
x could be fertilization, watering (irrigation) or seeds added 
ε could be random variation due to weather or soil conditions 
 
Likewise, for an observation on growth of grasshoppers in a field, 
 
Y could be the weight of a single grasshopper (from a population of     
  20) 
x could be the age or whether it was a female or a male,  
ε could be random variation due to its individual health status 
 
You see the point. All the Y´s are the things we observe, x are 
things that we can directly influence as experimenters, and ε are 
errors that we cannot directly influence or know. 
 



Now why do we want to express our linear models using the systematic 
component µ(x; ß)? The answer is that we can express many different 
kinds of models using this very general approach. 
 
For example, if we wanted to find an expression for a non-linear 
statistical model, we might want to use 
 

(4) µ(x; ß) = ß0x/(ß1+x), 
 
which would correspond to a Michaelis-Menten non-linear saturating 
curve. 
 
Suppose now that we wanted to generalize all our linear models using 
a similar approach. Then we can express µ(x; ß) as a linear 
combination of known functions gj(x) with unknown coefficients ßj: 
 
 

(5) µ(x; ß) =  
  
 
We can even make this expression simpler by defining xj as the result 
of gj(x): 
 

(6) xj=gj(x) 
 
The complicate equation from above now becomes 
 

(7) µ(x; ß) =  
 
And, if we also extract ß0 from the equation, we get 
 

(8) µ(x; ß) = ß0 +  
 
What we have done so far is formulate expressions for our systematic 
component, µ(x; ß). Remember that each linear model consists not 
only of this systematic component, but also of an error component: 
 
 (9) y (x, ε)= µ(x; ß) + ε 
 
If we bring all this together, we can write: 
 
 (10) y (x, ε)= µ(x; ß) + ε 

 
(11) y (x, ε)=   + ε 
 

Note that all the bold letters indicate we are dealing with matrices 
and vectors. Suppose we want to get rid of this: 
 

(12) yi = µi + εi =   + εi 
 
This equation is exactly the same as equation (11), except for that 
we do not express it in matrix form any more. 
 
 
Now here are several equations that are all exactly equivalent: 
 



 
 
 
 
 
 
 
 
 
 (13) y = µ + ε 
 
 (14) y = Xß + ε 
 
 (15) y =   + ε 

y = (yi;…;yn)T 
µ = (µ1;…;µn)T 
ε = (ε1;…;εn)T 
X = (x0;…;xm) 
 
 
 

Here, the following abbreviations have been used: 
 
y = (yi;…;yn)T is the vector of the response variable 
µ = (µ1;…;µn)T is the vector of the systematic component 
ε = (ε1;…;εn)T is the vector of the error component 
X = (x0;…;xm)  is the design matrix 
 
 
The design matrix is something that may be unfamiliar to you. It 
consists of rows and columns (like any matrix). The rows in this 
matrix are the “replicates” of your experiment – there are as many 
rows as there are individual data points. The design matrix has as 
many columns as there are explanatory variables. The design matrix 
contains the values each explanatory variable assumes. In case of 
the intercept, these values will always be 1, because the design 
matrix is later multiplied by the vector of coefficients, ß. 
 
Suppose we are measuring yield in 4 plants, and the amount of 
fertilizer added is used as an explanatory variable. Then the design 
matrix will look like this: 
 

Intercept Fertilizer added 
1 10 
1 20 
1 30 
1 40 

 
 
Likewise, if we are dealing with an ANOVA model, we might just want 
to have plants that are either fertilized or not. Then, the design 
matrix becomes: 
 
 

Intercept Fertilized 
1 0 
1 0 
1 1 
1 1 

 
 



Mixed-effects models 
 
 
What is the difference between a linear model and a linear mixed-
effects model? Well, it is easiest to find this out by looking at a 
mixed-effects model and compare it to what we already know: 
 
Linear model:   y = Xß + ε 
Mixed effects model:  y = Xß + Zb + ε 

Here, there is a fixed effect ß for every element in the fixed-
effects matrix X. In addition, there is a random effects component 
b. By convention, random effects are always denoted by Latin 
characters, while fixed effects get Greek characters. Z is an 
identity matrix just consisting of one column of 1´s. 

The b´s are all assumed to be normally distributed with mean 0 and 
one standard deviation. 

 

More details will be added soon. 

 

 


